Taise Matte Manhabosco

R. J. C. Batista, et al., “Nanomechanics of few-layer materials: do individual layers slide upon folding?,” Beilstein J. Nanotechnol., vol. 11, pp. 1801–1808, 2020.
L. M. Mota, et al., “Soapstone reinforced hydroxyapatite coatings for biomedical applications,” Surface and Coatings Technology, vol. 397, pp. 126005, 2020. Publisher's VersionAbstract
Mechanical resistant bioactive materials are of high interest for biomedical applications. In this work, we address the improvement in mechanical properties of HA coatings by the addition of a cheap and widely available secondary phase material, the talc from soapstone. The composites hydroxyapatite/talc (HA/talc) were successfully obtained by pulsed electrodeposition and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, corrosion and wear resistance and biocompatibility tests. We found that the addition of talc greatly improves the mechanical properties of coatings (i. e., wear track and friction coefficient in wear tests were significantly diminished) without diminishing corrosion resistance and biocompatibility. Alamar Blue® tests, alkaline phosphatase activity, and collagen production indicate that the biocomposites are biocompatible and talc itself induce bone maturation.
R. F. Dias, et al., “Ab initio molecular dynamics simulation of methanol and acetonitrile: The effect of van der Waals interactions,” Chemical Physics Letters, vol. 714, pp. 172 - 177, 2019. Publisher's VersionAbstract
We employed PBE and BLYP semi-local functionals and the van der Waals density functional of Dion et al. (2004) (vdW-DF) to investigate structural properties of liquid acetonitrile and methanol. Among those functionals the vdW-DF is the only one that correctly predicts energy minima in inter-molecular interactions between acetonitrile molecules. We found that van der Waals interactions have a negligible effect on H-bonds in methanol chains. However, it significantly increases chain packing resulting in a more dense liquid in comparison to the other two functionals. The overall trend is that the vdW-DF tends to overestimate density and bulk modulus, meanwhile the semi-local functionals tend to underestimate density. Thus, van der Waals interactions play an important role in the properties of liquids in which much stronger dipole-dipole interactions are present.
S. M. Manhabosco, T. M. Manhabosco, N. Geoffroy, V. Vignal, and L. F. P. Dick, “Corrosion behaviour of galvanized steel studied by electrochemical microprobes applied on low-angle cross sections,” Corrosion Science, vol. 140, pp. 379 - 387, 2018. Publisher's VersionAbstract
The combined use of the microcapillary cell (MEC) and scanning vibrating electrode technique (SVET) and low-angle cross sections was employed to elucidate the role of each coating region on the protection of the cut-edge corrosion of galvanized steels. Different compounds are involved in the blocking action of the corrosion products: Zincite (ZnO) on the steel substrate, hydrozincite (Zn5(OH)6(CO3)2) at the coating/steel interface, and Simonkolleite (Zn5(OH)8Cl2) and ZnO on the different coating regions in different proportions. The coating surface is also active at the initial stage and during long-term protection and thus, must be considered in experimental simulation of the cut-edge corrosion.
R. F. Dias, J. da Rocha Martins, H. Chacham, A. B. de Oliveira, T. M. Manhabosco, and R. J. C. Batista, “Nanoporous Graphene and H-BN from BCN Precursors: First-Principles Calculations,” The Journal of Physical Chemistry C, vol. 122, no. 7, pp. 3856-3864, 2018. Publisher's Version
V. F. L. Filho, et al., “Effect of TiO2 Nanoparticles on Polyaniline Films Electropolymerized at Different pH,” The Journal of Physical Chemistry C, vol. 120, no. 27, pp. 14977-14983, 2016. Publisher's Version
C. K. B. de Vasconcelos, R. J. C. Batista, M. G. R. da Régis, T. M. Manhabosco, and A. B. de Oliveira, “A simple model for solute–solvent separation through nanopores based on core-softened potentials,” Physica A: Statistical Mechanics and its Applications, vol. 453, pp. 184 - 193, 2016. Publisher's VersionAbstract
Abstract We propose an effective model for solute separation from fluids through reverse osmosis based on core-softened potentials. Such potentials have been used to investigate anomalous fluids in several situations under a great variety of approaches. Due to their simplicity, computational simulations become faster and mathematical treatments are possible. Our model aims to mimic water desalination through nano-membranes through reverse osmosis, for which we have found reasonable qualitative results when confronted against all-atoms simulations found in the literature. The purpose of this work is not to replace any fully atomistic simulation at this stage, but instead to pave the first steps towards coarse-grained models for water desalination processes. This may help to approach problems in larger scales, in size and time, and perhaps make analytical theories more viable.
A. B. Oliveira, H. Chacham, J. S. Soares, T. M. Manhabosco, H. F. V. de Resende, and R. J. C. Batista, “Vibrational G peak splitting in laterally functionalized single wall carbon nanotubes: Theory and molecular dynamics simulations,” Carbon, vol. 96, pp. 616-621, 2016. Publisher's Version
A. L. de Lima, L. A. M. Muessnich, T. M. Manhabosco, H. Chacham, R. J. C. Batista, and A. B. Oliveira, “Soliton instability and fold formation in laterally compressed graphene,” Nanotechnology, vol. 26, no. 4, 2015. Publisher's Version
A. M. Marques dos Santos, et al., “Corrosion and cell viability studies of graphite-like hydrogenated amorphous carbon films deposited on bare and nitrided titanium alloy,” Corrosion Science, vol. 82, pp. 297-303, 2014. Publisher's Version
R. J. C. Batista, S. S. Carara, T. M. Manhabosco, and H. Chacham, “A Ferromagnetic Pure Carbon Structure Composed of Graphene and Nanotubes: First-Principles Calculations,” Journal of Physical Chemistry C, vol. 118, no. 15, pp. 8143-8147, 2014. Publisher's Version
N. A. Yoshioka, H. L. Ramos Rocha, T. Cazati, T. M. Manhabosco, and I. L. Mueller, “Pulsed Electrodeposition of Polyaniline Films Used as Photogenerated Charge Transporting Layers in Organic Photovoltaic Devices,” Polimeros-Ciencia E Tecnologia, vol. 24, no. 1, pp. 88-93, 2014. Publisher's Version
T. M. Manhabosco, et al., “Cell response and corrosion behavior of electrodeposited diamond-like carbon films on nanostructured titanium,” Corrosion Science, vol. 66, pp. 169-176, 2013. Publisher's Version
T. M. Manhabosco, A. P. M. Barboza, R. J. C. Batista, B. R. A. Neves, and I. L. Mueller, “Corrosion, wear and wear-corrosion behavior of graphite-like a-C:H films deposited on bare and nitrided titanium alloy,” Diamond and Related Materials, vol. 31, pp. 58-64, 2013. Publisher's Version
R. J. C. Batista, A. B. Oliveira, N. R. Pereira, R. S. Paolini, and T. M. Manhabosco, “Boron nitride nanotubes as templates for half-metal nanowires,” Journal of Physics-Condensed Matter, vol. 24, no. 16, 2012. Publisher's Version
E. E. Moraes, T. M. Manhabosco, A. B. Oliveira, and R. J. C. Batista, “Tunable band gap of boron nitride interfaces under uniaxial pressure,” Journal of Physics-Condensed Matter, vol. 24, no. 47, 2012. Publisher's Version
T. M. Manhabosco, S. M. Tamborim, C. B. dos Santos, and I. L. Mueller, “Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution,” Corrosion Science, vol. 53, no. 5, pp. 1786-1793, 2011. Publisher's Version
T. M. Manhabosco and I. L. Mueller, “Deposition of thin cobalt films onto silicon by galvanostatic and potentiostatic techniques,” Journal of Materials Science, vol. 44, no. 11, pp. 2931-2937, 2009. Publisher's Version
T. M. Manhabosco and I. L. Muller, “Electrodeposition of diamond-like carbon (DLC) films on Ti,” Applied Surface Science, vol. 255, no. 7, pp. 4082-4086, 2009. Publisher's Version
T. M. Manhabosco and I. L. Muller, “Tribocorrosion of Diamond-Like Carbon Deposited on Ti6Al4V,” Tribology Letters, vol. 33, no. 3, pp. 193-197, 2009. Publisher's Version