Ana Paula Moreira Barboza

R. J. C. Batista, et al., “Nanomechanics of few-layer materials: do individual layers slide upon folding?,” Beilstein J. Nanotechnol., vol. 11, pp. 1801–1808, 2020.
M. G. C. Machado, et al., “Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide,” Drug Delivery and Translational Research, 2020. Publisher's VersionAbstract
Near-infrared fluorescent dyes, such as IR780, are promising theranostics, acting as photosensitizers for photodynamic therapy and in vivo tracers in image-guided diagnosis. This work compared the uptake by macrophage-like cells of IR780 either physically associated or covalently attached to poly(D,L-lactide) (PLA) formulated as polymeric nanocapsules (NC) from a blend of PLA homopolymer and PLA-PEG block copolymer. The physicochemical characterization of both NC was conducted using asymmetric flow field-flow fractionation (AF4) analysis with static and dynamic light scattering and atomic force microscopy. The interaction of IR780 with serum proteins was evidenced by AF4 with fluorescence detection and flow cytometry in cell uptake studies. The average diameters of NC were around 120 nm and zeta potentials close to -40 mV for all NC. NC uptake by cells in different media and experimental conditions shows significantly lower fluorescence intensities for IR780 covalently linked to PLA and correspondingly low quantitative uptake. Different mechanisms of internalization were evidenced depending on the IR780 type of association to NC. Serum proteins mediate IR780 interaction with cells in a dose-dependent manner. Our results show that non-covalently linked IR780 was released from NC and accumulated in macrophage cells. Oppositely, IR780 conjugated to PLA provides stable association with NC, and its fluorescence is representative of cell uptake of the nanocarrier itself. This work strongly reinforces the importance of covalent attachment of a fluorescence dye such as IR780 to the nanocarrier to study their interaction with cells in vitro and to obtain reliable tracking in image-guided therapy.
L. M. Mota, et al., “Soapstone reinforced hydroxyapatite coatings for biomedical applications,” Surface and Coatings Technology, vol. 397, pp. 126005, 2020. Publisher's VersionAbstract
Mechanical resistant bioactive materials are of high interest for biomedical applications. In this work, we address the improvement in mechanical properties of HA coatings by the addition of a cheap and widely available secondary phase material, the talc from soapstone. The composites hydroxyapatite/talc (HA/talc) were successfully obtained by pulsed electrodeposition and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, corrosion and wear resistance and biocompatibility tests. We found that the addition of talc greatly improves the mechanical properties of coatings (i. e., wear track and friction coefficient in wear tests were significantly diminished) without diminishing corrosion resistance and biocompatibility. Alamar Blue® tests, alkaline phosphatase activity, and collagen production indicate that the biocomposites are biocompatible and talc itself induce bone maturation.
L. Ã. \textordmasculinebia G. Nascimento, et al., “Novel PEG 4000 derivatives and its use in controlled release of drug indomethacin,” QuÃ\-mica Nova, vol. 43, pp. 685 - 691, 2020. Publisher's Version
M. F. Cipreste, et al., “A new theranostic system for bone disorders: Functionalized folate-MDP hydroxyapatite nanoparticles with radiolabeled copper-64,” Materials Chemistry and Physics, pp. 123265, 2020. Publisher's VersionAbstract
Hydroxyapatite nanoparticles have been investigated as biological agents for the treatment and diagnosis of bone diseases due to their properties, providing high affinity to bone tissues and also due to the possibility to chemically modify the surfaces of these nanoparticles to provide active targeting to bone tumors or other bone disorders. In this work, synthetic hydroxyapatite nanoparticles and their surface modifications with folic and medronic acid were studied. Copper-64 was produced by neutron irradiation in a TRIGA MARK I nuclear reactor, and the functionalized nanoparticles radiolabeled with this radioisotope. The multi-technique characterization includes FTIR, PXRD, TGA, DSC, CHN, Zeta potential, XPS, SEM, TEM, and Gamma spectroscopy. Furthermore, the evaluation of the chemical interaction stability was through leaching tested for efficiency. The results indicate that folic and medronic acids can be covalently bonded to HA surface, producing a new material not yet described in the literature, been stably attached to hydroxyapatite nanoparticle surfaces, able to provide active targeting for bone disorders. The complexation of copper-64 provides high radiochemistry purity, although the specific activity must be improved.
A. P. M. Barboza, J. C. C. Santos, E. Silva-Pinto, and B. R. A. Neves, “Gypsum: an environment-friendly, inexpensive and robust height calibration standard at nanometer-scale for atomic force microscopy,” Nanotechnology, vol. 31, no. 11, pp. 115704, 2019. Publisher's VersionAbstract
Gypsum is an Earth-abundant mineral with enormous applications in agriculture and civil engineering. Here, we show it is also an excellent height calibration standard alternative for atomic force microscopy (AFM). Using plain water as etchant, gypsum flakes readily review 0.75 nm tall terraces which are easy to image (lateral dimensions from tens to hundreds of nanometers) and robust against time in ambient conditions. Therefore, the present work demonstrates a new height standard alternative which is easily-available for all AFM microscopists around the world.
A. P. M. Barboza, et al., “Graphene/h-BN heterostructures under pressure: From van der Waals to covalent,” Carbon, vol. 155, pp. 108 - 113, 2019. Publisher's VersionAbstract
Scanning probe microscopy and ab initio calculations reveal modifications on the electronic and structural properties of graphene/h-BN heterostructures induced by compression. Using AFM and EFM techniques, with charge injection being made in the heterostructures at different pressures, the charge injection efficiency monotonically decreases with increasing pressure for monolayer-graphene (MLG)+BN heterostructures, indicative of a conductor-insulator electronic transition. Bilayer-graphene (BLG)+BN and trilayer-graphene (TLG)+BN heterostructures show a non-monotonic behavior of charge injection versus pressure, indicative of competing electronic structure modifications. First-principle calculations of these systems indicate a pressure-induced van der Waals-to-covalent interlayer transition, where such interlayer covalent binding, in the presence of water molecules, results in a disordered insulating structure for the MLG + BN case, while it leads to an ordered conducting structure for both BLG + BN and TLG + BN heterostructures. These opposing effects may have a strong influence on graphene/h-BN-based electronic devices and their physics under pressurized environments.
Â. L. Andrade, et al., “Glass-ionomer-propolis composites for caries inhibition: flavonoids release, physical-chemical, antibacterial and mechanical properties,” Biomedical Physics & Engineering Express, vol. 5, no. 2, pp. 027006, 2019. Publisher's VersionAbstract
The addition of propolis extract (PE) to the glass ionomer results in an adhesive material for restorative treatment, with interesting properties mainly due to the flavonoids contained in the propolis extract. However, no study of the flavonoid release profile in these materials was reported. This work studies the flavonoid release profile in such materials aiming to contribute to the future synthesis of optimized devices adept to prolong the efficacy of the drug. The study involved the synthesis and study of the physicochemical, antibacterial and mechanical properties of glass ionomer cement (GIC) and glass-ionomer-propolis composites (GIC-PE). The samples were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analyses. The released concentration of flavonoids, the antimicrobial activity and the compressive strength were also evaluated. Antimicrobial activity was assessed against Streptococcus mutans, Streptococcus salivarius, and Candida albicans, common pathogens in the mouth. The results indicate that the antibacterial activity of GIC-PE samples is closely correlated with the release of flavonoids. The method used to prepare the composite GIC-PE leads to an initial drug delivery burst effect able to diminish partially the population of bacteria tested. The mechanical properties and thermal stability of GIC-PE are higher than those of the GIC and are clearly related to its microstructure. This study is clinically significant because the addition of propolis extract (PE) to the GIC resulted in a novel differentiated product with enhanced mechanical and antimicrobial properties compared to the GIC.
M. L. S. Azevedo, B. M. Silveira, K. M. Novack, A. P. M. Barboza, B. R. A. Neves, and V. M. R. dos Santos, “Study of Controlled Release of PMMA-g-PEG Copolymer and Derivatives Incorporated with the Indomethacin Drug,” Macromolecular Symposia, vol. 381, no. 1, pp. 1800145, 2018. Publisher's VersionAbstract
Synthetic polymers are made up of repeated monomeric units, and this gives them a very versatile appearance, making them useful in many areas of science. One is the pharmaceutical, which correlates the properties of the polymer with the active principle, so they can be used as an excipient or in the controlled release system. The PMMA-g-PEG4000 has characteristics derived from its precursors, that are pharmacologically active. When we incorporate drugs into this structure, the polymer can act on the controlled release, lessening the toxic character of the drug and producing fewer side effects. In this work, incorporations of the drug indomethacin were made in the PMMA-g-PEG copolymer and derivatives (PMMA-g-PEG4000 ETIL and PMMA-g-PEG4000 ACET). The samples were characterized by infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA), and atomic force microscopy (AFM) measurements. For each sample, the controlled release was performed in a total time of 4 h and the efficiency of the modified structures was verified.
A. P. M. Barboza, et al., “Compression-Induced Modification of Boron Nitride Layers: A Conductive Two-Dimensional BN Compound,” ACS Nano, pp. null, 2018. Publisher's Version
H. Chacham, A. P. M. Barboza, A. B. de Oliveira, C. K. de Oliveira, R. J. C. Batista, and B. R. A. Neves, “Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds,” Nanotechnology, vol. 29, no. 9, pp. 095704, 2018. Publisher's VersionAbstract
In the present work, we use atomic force microscopy nanomanipulation of 2D-material standing folds to investigate their mechanical deformation. Using graphene, h-BN and talc nanoscale wrinkles as testbeds, universal force–strain pathways are clearly uncovered and well-accounted for by an analytical model. Such universality further enables the investigation of each fold bending stiffness κ as a function of its characteristic height h 0 . We observe a more than tenfold increase of κ as h 0 increases in the 10–100 nm range, with power-law behaviors of κ versus h 0 with exponents larger than unity for the three materials. This implies anomalous scaling of the mechanical responses of nano-objects made from these materials.
T. F. D. Fernandes, et al., “Robust nanofabrication of monolayer MoS2 islands with strong photoluminescence enhancement via local anodic oxidation.,” 2D Materials, 2018. Publisher's VersionAbstract
Abstract In this work, we demonstrate the nanofabrication of monolayer MoS2 islands using local anodic oxidation of few-layer and bulk MoS2 flakes. The nanofabricated islands present true monolayer Raman signal and photoluminescence intensity up to two orders of magnitude larger than that of a pristine monolayer. This technique is robust enough to result in monolayer islands without the need of meticulously fine-tuning the oxidation process, thus providing a fast and reliable way of creating monolayer regions with enhanced optical properties and with controllable size, shape, and position.
A. F. Versiani, et al., “Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice,” Journal of Nanobiotechnology, vol. 15, no. 1, pp. 26, 2017. Publisher's VersionAbstract
Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue.
A. B. Alencar, A. P. M. Barboza, B. S. Archanjo, H. Chacham, and B. R. A. Neves, “Experimental and theoretical investigations of monolayer and few-layer talc,” 2d Materials, vol. 2, no. 1, 2015. Publisher's Version
K. A. S. Araujo, et al., “Charge transfer between carbon nanotubes on surfaces,” Nanoscale, vol. 7, no. 39, pp. 16175-16181, 2015. Publisher's Version
L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, A. M. de Paula, and Ieee, “Imaging the crystal structure of few-layer two-dimensional crystals by optical nonlinearity,” in 2013 Conference on Lasers and Electro-Optics, 2013. Publisher's Version
L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Physical Review B, vol. 87, no. 20, 2013. Publisher's Version
T. M. Manhabosco, A. P. M. Barboza, R. J. C. Batista, B. R. A. Neves, and I. L. Mueller, “Corrosion, wear and wear-corrosion behavior of graphite-like a-C:H films deposited on bare and nitrided titanium alloy,” Diamond and Related Materials, vol. 31, pp. 58-64, 2013. Publisher's Version
B. S. Archanjo, et al., “The use of a Ga+ focused ion beam to modify graphene for device applications,” Nanotechnology, vol. 23, no. 25, 2012. Publisher's Version
A. P. M. Barboza, S. S. Carara, R. J. C. Batista, H. Chacham, and B. R. A. Neves, “Controlling the Electrical Behavior of Semiconducting Carbon Nanotubes via Tube Contact,” Small, vol. 8, no. 2, pp. 220-224, 2012. Publisher's Version