Recent Publications Nano

Optical properties of boron nitride nanoribbons with reconstruted edges

J. A. Gonçalves, O. F. P. dos Santos, R. J. C. Batista, and S. Azevedo, “Optical properties of boron nitride nanoribbons with reconstruted edges,” Solid State Communications, pp. 114627, 2022. Publisher's VersionAbstract
In this work, we employ first-principles calculations to investigate the optical properties of boron nitride nanoribbons with reconstructed edges. We found that because of the presence of homopolar B-B and N-N bonds in the edges, such nanoribbons, unlike boron nitride nanotubes, absorb light and have non-null optical conductivity in the visible and infrared range. The stoichiometry and distribution of the homopolar bonds in the edges change the absorption, reflectance, refraction index, and optical conductivity of nanoribbons, which may allow the tuning of those properties. Regarding the absorption in the infrared and visible range, the nanoribbons with B excess are almost unaffected by the direction of light incidence. On the other hand, the direction of light incidence strongly affects the intensity of the absorption peaks of nanoribbons with N excess in the region. At ultraviolet and above non-cylindrical geometry of the ribbons with the homopolar bonds at the edges also lead to a dependence of the optical properties with the direction of light incidence.
Leia mais

First-principle investigation of silicon carbide nanosheets fluorination: Stability trends, electronic, optical and magnetic properties

J. A. Gonçalves, O. F. P. dos Santos, R. J. C. Batista, and S. Azevedo, “First-principle investigation of silicon carbide nanosheets fluorination: Stability trends, electronic, optical and magnetic properties,” Chemical Physics Letters, vol. 787, pp. 139266, 2022. Publisher's VersionAbstract
We employed first-principles calculations to investigate the fluorination of silicon carbide nanosheets. We found that the Si atoms are the energetically favorable adsorption sites for F atoms in silicon carbide nanosheets in all studied cases. The strain caused by the fourfold coordinated Si atoms in the flat SiC nanosheet determines the relative position of the adsorbed F atoms: occupying nearest-neighbor Si sites if they bound sheet’s opposing sides or away from each other if they are on the same side of the sheet. The fluorinated nanosheets’ electronic and magnetic properties are weakly dependent on which side of the sheet the F atoms bind; however, they are strongly dependent on the relative distance between them. For F atoms adsorbed on nearest-neighbor Si sites, the system is a small gap p-type semiconductor with 1 μB per adsorbed atom. On the other hand, if F atoms do not occupy nearest-neighbor Si sites, the system is a metal with 1/2 μB per adsorbed atom. The adsorption of F atoms strongly affects the optical properties of SiC sheets inducing optical anisotropy regarding the direction of the incidence of light.
Leia mais

Structural, optical, and magnetic evaluation of Co-, Ni-, and Mn-modified multiferroic BiFeO3 ceramics

J. N. B. Sales, et al., “Structural, optical, and magnetic evaluation of Co-, Ni-, and Mn-modified multiferroic BiFeO3 ceramics,” Ceramics International, vol. 47, no. 17, pp. 24564-24573, 2021. Publisher's VersionAbstract
Co-, Ni-, and Mn-doped BiFeO3 (BFO) ceramics were synthesized herein through a solid-state reaction. All doped BFO samples exhibit visible-light response, and the Co- and Ni-doped BFO samples present enhanced ferromagnetic order at room temperature. All doped samples show secondary phases in minor quantities. Optical spectra reveal two absorptions bands, indicating multiple electron transitions for BFO and its secondary phases. M − H hysteresis loops suggest enhanced ferromagnetism in the Co- and Ni-doped BFO samples because of magnetic spinel CFP and NFO phases, respectively, whereas changes in oxygen vacancies and Fe–O–Fe bond angle play minor roles in the ferromagnetic behavior.
Leia mais
More
d s t q q s s
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
31