Edge-Reconstructed, Few-Layered Graphene Nanoribbons: Stability and Electronic Properties

Citation:

J. A. Gonçalves, R. Nascimento, M. J. S. Matos, A. B. de Oliveira, H. Chacham, and R. J. C. Batista, “Edge-Reconstructed, Few-Layered Graphene Nanoribbons: Stability and Electronic Properties,” The Journal of Physical Chemistry C, vol. 121, no. 10, pp. 5836-5840, 2017.

Abstract:

J. Phys. Chem. C, 2017, 121 (10), pp 5836–5840

We report a first-principles study of edge-reconstructed, few-layered graphene nanoribbons. We find that the nanoribbon stability increases linearly with increasing width and decreases linearly with increasing number of layers (from three to six layers). Specifically, we find that a three-layer 1.3 nm wide ribbon is energetically more stable than the C60 fullerene, and that a 1.8 nm wide ribbon is more stable than a (10,0) carbon nanotube. The morphologies of the reconstructed edges are characterized by the presence of five-, six-, and sevenfold rings, with sp3 and sp2bonds at the reconstructed edges. The electronic structure of the few-layered nanoribbons with reconstructed edges can be metallic or semiconducting, with band gaps oscillating between 0 and 0.28 eV as a function of ribbon width.

Publisher's Version

Last updated on 03/30/2017