2020
A. B. Alencar, A. de Oliveira, and H. Chacham, “
Crystal reorientation and plastic deformation of single-layer MoS2 and MoSe2 under uniaxial stress,”
Journal of Physics: Condensed Matter, 2020.
Publisher's VersionAbstractWe investigate theoretically, through of first-principles calculations, the effect of the application of large in-plane uniaxial stress on single-layer of MoS2, MoSe2, and MoSSe alloys. For stress applied along the zigzag direction, we predict an anomalous behavior near the point fracture. This behavior is characterized by the reorientation of the MoS2 structure along the applied stress from zigzag to armchair due to the formation of transient square-lattice regions in the crystal, with an apparent (although not real) crystal rotation of 30 degrees. After reorientation, a large plastic deformation √3-1 remains after the stress is removed. This behavior is also observed in MoSe2 and in MoSSe alloys. This phenomenon is observed both in stress-constrained geometry optimizations and in ab initio molecular dynamics simulations at finite temperature and applied stress.
R. J. C. Batista, et al., “
Nanomechanics of few-layer materials: do individual layers slide upon folding?,”
Beilstein J. Nanotechnol., vol. 11, pp. 1801–1808, 2020.
L. G. P. Martins, et al., “
Hard, transparent, sp3-containing 2D phase formed from few-layer graphene under compression,”
Carbon, 2020.
Publisher's VersionAbstractDespite several theoretically proposed two-dimensional (2D) diamond structures, experimental efforts to obtain such structures are in initial stage. Recent high-pressure experiments provided significant advancements in the field, however, expected properties of a 2D-like diamond such as sp3 content, transparency and hardness, have not been observed together in a compressed graphene system. Here, we compress few-layer graphene samples on SiO2/Si substrate in water and provide experimental evidence for the formation of a quenchable hard, transparent, sp3-containing 2D phase. Our Raman spectroscopy data indicates phase transition and a surprisingly similar critical pressure for two-, five-layer graphene and graphite in the 4-6 GPa range, as evidenced by changes in several Raman features, combined with a lack of evidence of significant pressure gradients or local non-hydrostatic stress components of the pressure medium up to ≈ 8 GPa. The new phase is transparent and hard, as evidenced from indentation marks on the SiO2 substrate, a material considerably harder than graphene systems. Furthermore, we report the lowest critical pressure (≈ 4 GPa) in graphite, which we attribute to the role of water in facilitating the phase transition. Theoretical calculations and experimental data indicate a novel, surface-to-bulk phase transition mechanism that gives hint of diamondene formation.
M. G. C. Machado, et al., “
Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide,”
Drug Delivery and Translational Research, 2020.
Publisher's VersionAbstractNear-infrared fluorescent dyes, such as IR780, are promising theranostics, acting as photosensitizers for photodynamic therapy and in vivo tracers in image-guided diagnosis. This work compared the uptake by macrophage-like cells of IR780 either physically associated or covalently attached to poly(D,L-lactide) (PLA) formulated as polymeric nanocapsules (NC) from a blend of PLA homopolymer and PLA-PEG block copolymer. The physicochemical characterization of both NC was conducted using asymmetric flow field-flow fractionation (AF4) analysis with static and dynamic light scattering and atomic force microscopy. The interaction of IR780 with serum proteins was evidenced by AF4 with fluorescence detection and flow cytometry in cell uptake studies. The average diameters of NC were around 120 nm and zeta potentials close to -40 mV for all NC. NC uptake by cells in different media and experimental conditions shows significantly lower fluorescence intensities for IR780 covalently linked to PLA and correspondingly low quantitative uptake. Different mechanisms of internalization were evidenced depending on the IR780 type of association to NC. Serum proteins mediate IR780 interaction with cells in a dose-dependent manner. Our results show that non-covalently linked IR780 was released from NC and accumulated in macrophage cells. Oppositely, IR780 conjugated to PLA provides stable association with NC, and its fluorescence is representative of cell uptake of the nanocarrier itself. This work strongly reinforces the importance of covalent attachment of a fluorescence dye such as IR780 to the nanocarrier to study their interaction with cells in vitro and to obtain reliable tracking in image-guided therapy.
L. M. Mota, et al., “
Soapstone reinforced hydroxyapatite coatings for biomedical applications,”
Surface and Coatings Technology, vol. 397, pp. 126005, 2020.
Publisher's VersionAbstractMechanical resistant bioactive materials are of high interest for biomedical applications. In this work, we address the improvement in mechanical properties of HA coatings by the addition of a cheap and widely available secondary phase material, the talc from soapstone. The composites hydroxyapatite/talc (HA/talc) were successfully obtained by pulsed electrodeposition and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, corrosion and wear resistance and biocompatibility tests. We found that the addition of talc greatly improves the mechanical properties of coatings (i. e., wear track and friction coefficient in wear tests were significantly diminished) without diminishing corrosion resistance and biocompatibility. Alamar Blue® tests, alkaline phosphatase activity, and collagen production indicate that the biocomposites are biocompatible and talc itself induce bone maturation.
L. Ã. \textordmasculinebia G. Nascimento, et al., “
Novel PEG 4000 derivatives and its use in controlled release of drug indomethacin,”
QuÃ\-mica Nova, vol. 43, pp. 685 - 691, 2020.
Publisher's Version E. B. A. Paez, et al., “
Synthesis, Photophysical and Electrochemical Properties of Novel and Highly Fluorescent Difluoroboron Flavanone β-Diketonate Complexes,”
New J. Chem., pp. -, 2020.
Publisher's VersionAbstractDifluoroboron β-diketonates complexes are highly luminescent with extensive properties such as their fluorescence both in solution and in solid state and their high molar extinction coefficients. Due to their rich optical properties, these compounds have been studied for their applications in organic electronics such as in self-assembly and applications in biosensors, bio-imaging and optoelectronic devices. The easy and fast synthesis of difluoroboron β-diketonate (BF2dbm) complexes makes their applications even more attractive. Although many different types of difluoroboron β-diketonates complexes have been studied, the cyclic flavanone analogues of these compounds have never been reported in the literature. Therefore, the present work aims to synthesize difluouroboron flavanone β-diketonate complexes, study their photophysical and electrochemical properties and assess their suitability for applications in optoelectronic devices. The synthesis was based on a Baker–Venkataraman reaction which initially provided substituted diketones, which were subsequently reacted with aldehydes to afford the proposed flavanones. The complexation was achieved by reacting flavanones and BF3. Et2O and in total 9 novel compounds were obtained. A representative difluoroboron flavanone complex was subjected to single crystal X-ray diffraction to unequivocally confirm the chemical structure. A stability study indicated only partial degradation of these compounds over a few days in a protic solvent at elevated temperatures. Photophysical studies revealed that the substituent groups and the solvent media significantly influence the electrochemical and photophysical properties of the final compounds, especially the molar absorption coefficient, fluorescence quantum yields, and the band gap. Moreover, the compounds exhibited a single excited-state lifetime in all studied solvent. Computational studies were employed to evaluate ground and excited states properties and carry out DFT and TDDFT level analysis. These studies clarify the role of each state in the experimental absorption spectra as well as the effect of the solvent.
M. F. Cipreste, et al., “
A new theranostic system for bone disorders: Functionalized folate-MDP hydroxyapatite nanoparticles with radiolabeled copper-64,”
Materials Chemistry and Physics, pp. 123265, 2020.
Publisher's VersionAbstractHydroxyapatite nanoparticles have been investigated as biological agents for the treatment and diagnosis of bone diseases due to their properties, providing high affinity to bone tissues and also due to the possibility to chemically modify the surfaces of these nanoparticles to provide active targeting to bone tumors or other bone disorders. In this work, synthetic hydroxyapatite nanoparticles and their surface modifications with folic and medronic acid were studied. Copper-64 was produced by neutron irradiation in a TRIGA MARK I nuclear reactor, and the functionalized nanoparticles radiolabeled with this radioisotope. The multi-technique characterization includes FTIR, PXRD, TGA, DSC, CHN, Zeta potential, XPS, SEM, TEM, and Gamma spectroscopy. Furthermore, the evaluation of the chemical interaction stability was through leaching tested for efficiency. The results indicate that folic and medronic acids can be covalently bonded to HA surface, producing a new material not yet described in the literature, been stably attached to hydroxyapatite nanoparticle surfaces, able to provide active targeting for bone disorders. The complexation of copper-64 provides high radiochemistry purity, although the specific activity must be improved.
D. N. [de Freitas], et al., “
Water diffusion in carbon nanotubes under directional electric frields: Coupling between mobility and hydrogen bonding,”
Chemical Physics, vol. 537, pp. 110849, 2020.
Publisher's VersionAbstractMolecular Dynamics simulations of water confined in carbon nanotubes subjected to external electric fields show that water mobility strongly depends on the confining geometry, the intensity and directionality of the electric field. While fields forming angles of 0° and 45° slow down the water dynamics by increasing organization, perpendicular fields can enhance water diffusion by decreasing hydrogen bond formation. For 1.2 diameter long nanotubes, the parallel field destroys the ice-like water structure increasing mobility. These results indicate that the structure and dynamics of confined water are extremely sensitive to external fields and can be used to facilitate filtration processes.
I. Antoniazzi, et al., “
Oxygen intercalated graphene on SiC(0001): Multiphase SiOx layer formation and its influence on graphene electronic properties,”
Carbon, 2020.
Publisher's VersionAbstractLow-dimensionality materials are highly susceptible to interfaces. Indeed, intercalation of different chemical species in between epitaxial graphene and silicon carbide (SiC), for instance, may decouple the graphene with respect to the substrate due to the conversion of the buffer layer into a graphene layer. O-intercalation is known to release the strain of such 2D material and to lead to the formation of high structural quality AB-stacked bilayer graphene. Nonetheless, this interface transformation concomitantly degrades graphene electronic transport properties. In this work we employed different techniques in order to better understand the structure of the graphene/SiC interface generated by O-intercalation and to elucidate the origin of the poor electronic properties of graphene. Experimental results revealed the formation of a SiO2 rich layer with a defective transition layer in between it and the SiC, which is characterized by the existence of silicon oxycarbide structures. Scanning tunneling spectroscopy measurements revealed an extensive presence of electronic states just around the Fermi level all over the sample surface, which may suppress the charge carriers mobility around this region. According to theoretical calculations, such states are mainly due to the formation of silicon oxicarbides within the interfacial layer.
A. Souza, M. J. S. Matos, and M. S. C. Mazzoni, “
Oxidation-driven formation of precisely ordered antimonene nanoribbons,”
Journal of Physics: Condensed Matter, 2020.
Publisher's VersionAbstractThe control of geometric structure is a key aspect in the interplay between theoretical predictions and experimental realization in the science and applications of nanomaterials. This is particularly important in one-dimensional structures such as nanoribbons, in which the edge morphology dictates most of the electronic behavior in low energy scale. In the present work we demonstrate by means of first principles calculations that the oxidation of few-layer antimonene may lead to an atomic restructuring with formation of ordered multilayer zig-zag nanoribbons. The widths are uniquely determined by the number of layers of the initial structure, allowing the synthesis of ultranarrow ribbons and chains. We also show that the process may be extended to other compounds based on group V elements, such as arsenene. The characterization of the electronic structure of the resulting ribbons shows an important effect of stacking on band gaps and on modulation of electronic behavior.